54 research outputs found

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201

    Variable selection in high-dimensional linear models: partially faithful distributions and the PC-simple algorithm

    Full text link
    We consider variable selection in high-dimensional linear models where the number of covariates greatly exceeds the sample size. We introduce the new concept of partial faithfulness and use it to infer associations between the covariates and the response. Under partial faithfulness, we develop a simplified version of the PC algorithm (Spirtes et al., 2000), the PC-simple algorithm, which is computationally feasible even with thousands of covariates and provides consistent variable selection under conditions on the random design matrix that are of a different nature than coherence conditions for penalty-based approaches like the Lasso. Simulations and application to real data show that our method is competitive compared to penalty-based approaches. We provide an efficient implementation of the algorithm in the R-package pcalg.Comment: 20 pages, 3 figure

    A Complete Generalized Adjustment Criterion

    Full text link
    Covariate adjustment is a widely used approach to estimate total causal effects from observational data. Several graphical criteria have been developed in recent years to identify valid covariates for adjustment from graphical causal models. These criteria can handle multiple causes, latent confounding, or partial knowledge of the causal structure; however, their diversity is confusing and some of them are only sufficient, but not necessary. In this paper, we present a criterion that is necessary and sufficient for four different classes of graphical causal models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion subsumes the existing ones and in this way unifies adjustment set construction for a large set of graph classes.Comment: 10 pages, 6 figures, To appear in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI2015

    Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

    Full text link
    We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide new soundness and completeness proofs for the adjustment criterion for DAGs.Comment: 58 pages, 12 figures, to appear in JML

    Learning high-dimensional directed acyclic graphs with latent and selection variables

    Full text link
    We consider the problem of learning causal information between random variables in directed acyclic graphs (DAGs) when allowing arbitrarily many latent and selection variables. The FCI (Fast Causal Inference) algorithm has been explicitly designed to infer conditional independence and causal information in such settings. However, FCI is computationally infeasible for large graphs. We therefore propose the new RFCI algorithm, which is much faster than FCI. In some situations the output of RFCI is slightly less informative, in particular with respect to conditional independence information. However, we prove that any causal information in the output of RFCI is correct in the asymptotic limit. We also define a class of graphs on which the outputs of FCI and RFCI are identical. We prove consistency of FCI and RFCI in sparse high-dimensional settings, and demonstrate in simulations that the estimation performances of the algorithms are very similar. All software is implemented in the R-package pcalg.Comment: Published in at http://dx.doi.org/10.1214/11-AOS940 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exploring the Limits of Deep Image Clustering using Pretrained Models

    Full text link
    We present a general methodology that learns to classify images without labels by leveraging pretrained feature extractors. Our approach involves self-distillation training of clustering heads, based on the fact that nearest neighbors in the pretrained feature space are likely to share the same label. We propose a novel objective to learn associations between images by introducing a variant of pointwise mutual information together with instance weighting. We demonstrate that the proposed objective is able to attenuate the effect of false positive pairs while efficiently exploiting the structure in the pretrained feature space. As a result, we improve the clustering accuracy over kk-means on 1717 different pretrained models by 6.16.1\% and 12.212.2\% on ImageNet and CIFAR100, respectively. Finally, using self-supervised pretrained vision transformers we push the clustering accuracy on ImageNet to 61.661.6\%. The code will be open-sourced

    On Discrimination Discovery and Removal in Ranked Data using Causal Graph

    Full text link
    Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real dataset show the effectiveness of our approaches.Comment: 9 page

    Causal Inference Using Graphical Models with the R Package pcalg

    Get PDF
    The pcalg package for R can be used for the following two purposes: Causal structure learning and estimation of causal effects from observational data. In this document, we give a brief overview of the methodology, and demonstrate the package’s functionality in both toy examples and applications
    • …
    corecore